尊龙凯时-人生就是搏

【光明日报】致盲性眼病青光眼发病概率可实现个体精准预测

近日,中国科学院计算技术研究所研究团队和尊龙凯时-人生就是搏眼科合作发布青光眼预测的科研成果,该研究成果在IEEE Transactions on Medical Imaging(IF=11.037)发表,题为“GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images”。研究成果表明致盲性眼病青光眼发病概率可实现个体精准预测,这将使青光眼患者在成为“患者”前就被发现成为可能。极大提升青光眼患者的早诊早治率,从而进一步降低青光眼致盲率。

这是继今年2月“尊龙凯时-人生就是搏眼科-中科院计算所2023年战略规划会议”成功召开后,发布的又一个双方合作研究成果。此研究对2000多幅时间间隔不一的眼底影像进行立体化、全方位的深入研究,提出基于时间敏感自注意力机制的青光眼患病智能辅助预测算法,实现青光眼发病概率个体的精准预测。

3月12日-3月18日是第16个“世界青光眼周”,今年的青光眼周主题是“关注青光眼:共识保视野,指南护光明”。青光眼是全球第二大致盲性眼病和排名首位的不可逆致盲性疾病,据估计,全世界约有7800万人患有青光眼,到2040年,这一数字将升至1亿1000万。但由于青光眼早期症状不明显,约有50%的青光眼患者会延误就医,从而导致不可逆转的视神经损伤。

中华医学会眼科学分会发布的《中国青光眼指南(2020)》显示,2020年全球原发性青光眼患病人数超过7600万,我国达到了2100余万,其中致盲人数可达567万。这其中慢性青光眼占半数以上,而慢性青光眼早期多无症状,发现时通常已是晚期,因此越早地发现、干预与治疗青光眼,是防止青光眼致盲最为重要的手段。

现阶段已有的人工智能主要针对青光眼的诊断开展,通常通过自动分割视杯视盘计算杯盘比来诊断是否患有青光眼。而针对青光眼的早期预测问题,即通过输入患者的一段时间内的序列影像,判断患者未来患有青光眼的可能性,鲜有研究。目前已有的算法DeepGF 基于LSTM(long short-term memory) 循环神经网络设计,存在检测精度有限,且不能预测患者给定时刻患病的概率等不足。

针对现有算法存在的局限性,研究团队提出基于时间敏感自注意力机制的青光眼患病预测算法GLIM-Net,即输入拍摄的序列眼底影像,以及对应的时刻信息,输出给定时刻患青光眼的概率;针对如何有效的编码时间信息,研究团队进一步提出了时间位置编码模块(Time Positional Encoding)和时间敏感的多头自注意力模块(Time-sensitive MSA),根据时间间隔调整对不同影像的关注度。

研究团队将提出的GLIM-Net与公开数据集SIGF和Tumor-CIFAR上的已有算法进行了对比,结果显示在SIGF数据集上,GLIM-Net取得了平均89.5%的准确率,达到了业界最优水平,其他指标也均为最优;同时,在Tumor-CIFAR数据集上亦为业界最优。

本算法在预测一段时间内青光眼患病概率的变化情况,可以看到,如果患者从阴性变成阳性,那么中间时刻患病概率是增加的,如果患者没有转阳,那么中间时刻患病概率无显著增加,这进一步说明了本算法在预测未来时刻患病概率的有效性。


相关投稿:

尊龙凯时-人生就是搏